Introduction to “Cuts in Bayesian graphical models” by M. Plummer

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cuts in Bayesian graphical models

The cut function defined by theOpenBUGS software is described as a “valve” that prevents feedback in Bayesian graphical models. It is shown that theMCMC algorithm applied by OpenBUGS in the presence of a cut function does not converge to a well-defined limiting distribution. However, it may be improved by using tempered transitions. The cut algorithm is compared with multiple imputation as a go...

متن کامل

Introduction to Graphical Models

Two real-valued or vector-valued random variables X, Y are independent for probability measure P (written: X ⊥ Y [P ]) if for all sets A and B, P[X ∈ A, Y ∈ B] = P[X ∈ A] · P[Y ∈ B]. For jointly discrete or jointly continuous random variables this is equivalent to factoring of the joint probability mass function or probability density function, respectively. The variables X and Y are conditiona...

متن کامل

An introduction to graphical models

Graphical models are a marriage between probability theory and graph theory. They provide a natural tool for dealing with two problems that occur throughout applied mathematics and engineering – uncertainty and complexity – and in particular they are playing an increasingly important role in the design and analysis of machine learning algorithms. Fundamental to the idea of a graphical model is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics and Computing

سال: 2014

ISSN: 0960-3174,1573-1375

DOI: 10.1007/s11222-014-9538-1